

# CISCO SYSTEMS



# Securing 802.11 Wireless Networks

**Session ACC-232** 

#### **Session Information**

- Basic understanding of components of 802.11 networks
- Please save questions until the end



- Drivers for Wireless Security
- Wireless Security in 802.11
- Vulnerabilities in 802.11 Wireless Security
- Technologies for Secure Wireless LANs
- Deploying Secure Wireless LANs
- What Lies Ahead

- Drivers for Wireless Security
- Wireless Security in 802.11
- Vulnerabilities in 802.11 Wireless Security
- Technologies for Secure Wireless LANs
- Deploying Secure Wireless LANs
- What Lies Ahead

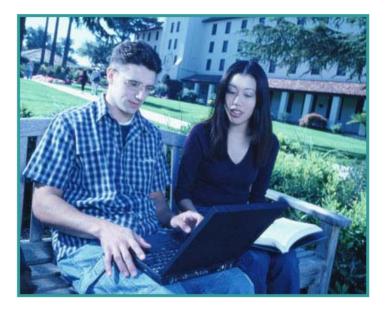
# **Key Markets for Wireless**

- Enterprise/Mid Market
- Education
- Manufacturing/Warehousing
- Retail
- Healthcare

# **Enterprise/Mid Market**

- Employees want wireless
- ROI—Up to 70 minutes more productivity per day
- If IT doesn't roll out wireless, employees will

Low end APs at the local computer reseller shop




## **Enterprise/Mid Market**

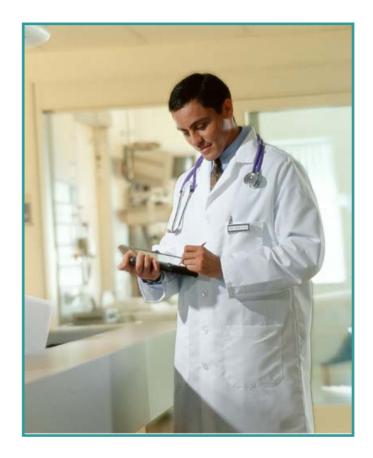
- Rogue deployments expose corporate network
- IT should provide WLANs and secure them

#### Education

- Collaborative learning applications aid students and teachers
- An unsecured WLAN leaves the following vulnerable
  - **Student records**
  - **Administrative DBs**
  - Proprietary learning materials



# Manufacturing/Warehousing/Retail


- Barcode readers and POS terminals very common
- Many wireless appliances only support static WEP, or don't use any security!
- If connected to corporate network, network is vulnerable

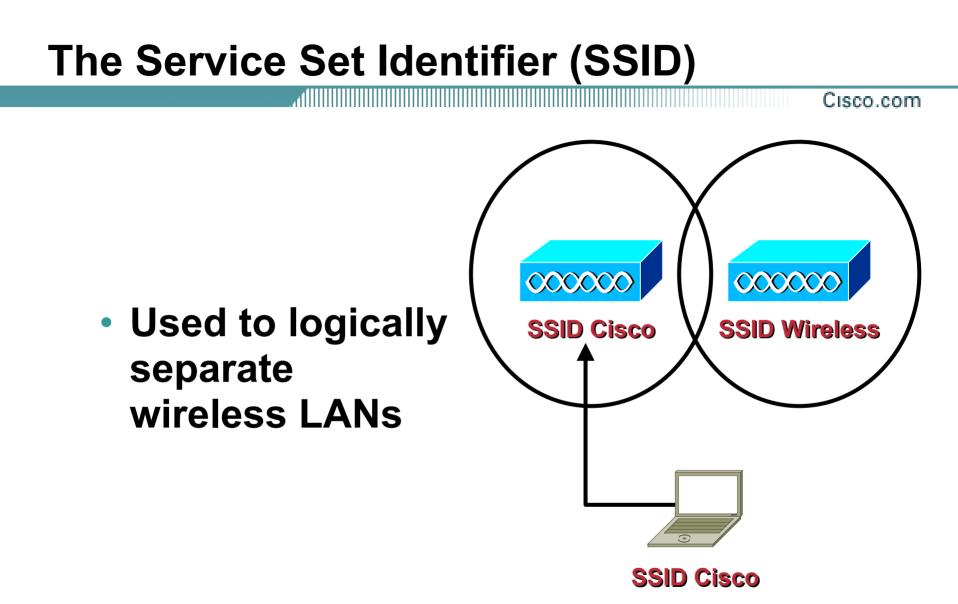


#### Healthcare

- Wireless enabled patient management applications and devices becoming pervasive
- Insecure deployments leave patient data vulnerable

Secure wireless LANS are an enabler for HIPAA compliance



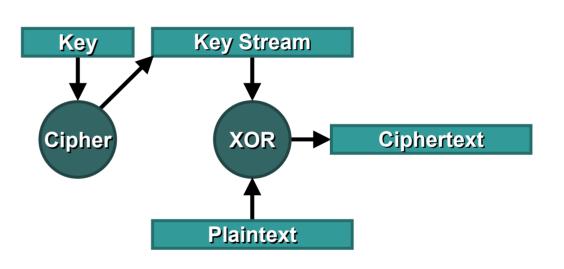

HIPAA : Health Insurance Portability and Accountability Act / US Protection of medical privacy



- Drivers for Wireless Security
- Wireless Security in 802.11
- Vulnerabilities in 802.11 Wireless Security
- Technologies for Secure Wireless LANs
- Deploying Secure Wireless LANs
- What Lies Ahead

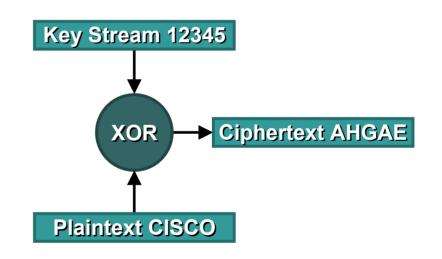
# **802.11 Wireless Security**

- Service Set Identifier (SSID)
- Wired Equivalent Privacy (WEP)
- Open Authentication
- Shared Key Authentication
- MAC Address Authentication



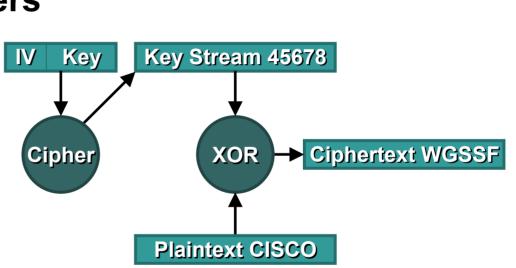

### **WEP Encryption**

- Wired Equivalent Privacy
- Based on the RC4 symmetric stream cipher
- Static, pre-shared, 40 bit or 104 bit keys on client and access point


# What Is a Stream Cipher?

- Generates a key stream of a desired length from the key
- The key stream is mixed with the plaintext data
- The result is ciphertext data



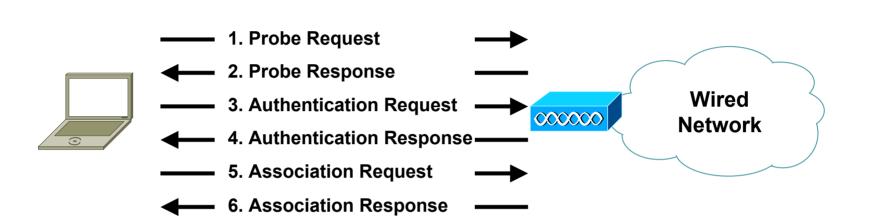

# What Is a Stream Cipher?

- Ciphers, like math equations, always produce the same output, given the same input
- This allows eavesdroppers to make educated guesses, and notices changes in the plaintext




# What Is an Initialization Vector?

- An initialization vector (IV) is value that alters the key stream
- It augments the key to generate a new key stream
- As the IV changes, so does the key stream

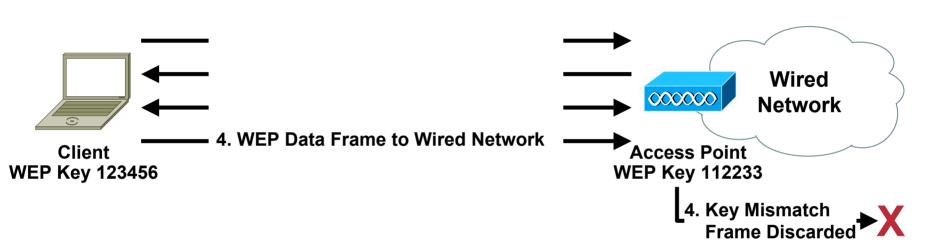



#### IVs in 802.11 Wireless Security

- 802.11 IVs are 24 bit integer values
- Augment 40 bit keys to 64 bits
- Augment 104 bit keys to 128 bits
- Sent in the clear



# **802.11 Authentication**




- Client probes for an AP
- Client requests authentication
- Client requests association
- Client can begin data exchange

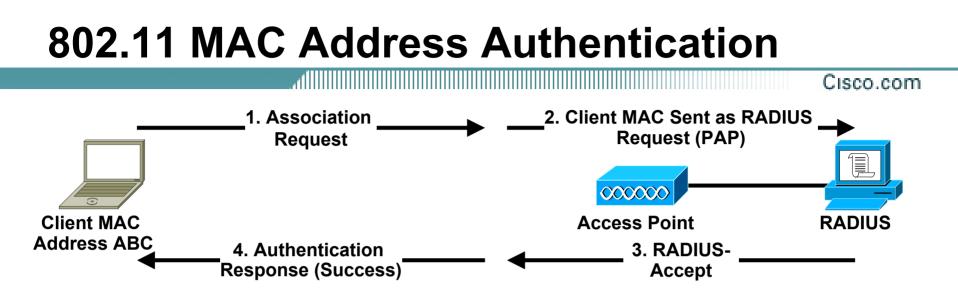
# **802.11 Open Authentication**

- Device oriented authentication
- Uses null authentication—All requests are granted
- With no WEP, network is wide open to any user
- If WEP encryption is enabled, WEP key becomes indirect authenticator

# **802.11 Open Authentication**



- Client send authentication request
- AP sends Success response
- WEP keys must match for data to traverse AP


# **802.11 Shared Key Authentication**

1. Authentication Request
 2. Authentication Response (Challenge)
 3. Authentication Request (Encrypted Challenge)
 4. Authentication Response (Success)
 Kep Key 112233

- Client and AP must use WEP with pre-shared keys
- Client requests shared key authentication
- AP sends plaintext challenge
- Client encrypts challenge with WEP key and responds
- If the AP can decrypt the response, client is valid

#### **802.11 MAC Address Authentication**

- Not part of 802.11 specification
- Vendor specific implementation
- Used to augment Open or Shared Key Authentication



- Client requests authentication
- Client requests association
- AP check MAC against:
  - 1) Local allowed list
  - 2) Forward to AAA server
- Accept Association

ACC-232

# Wireless Security in 802.11 Summary

- Authentication is device oriented
- Static, pre-shared WEP for encryption
- No key management specified

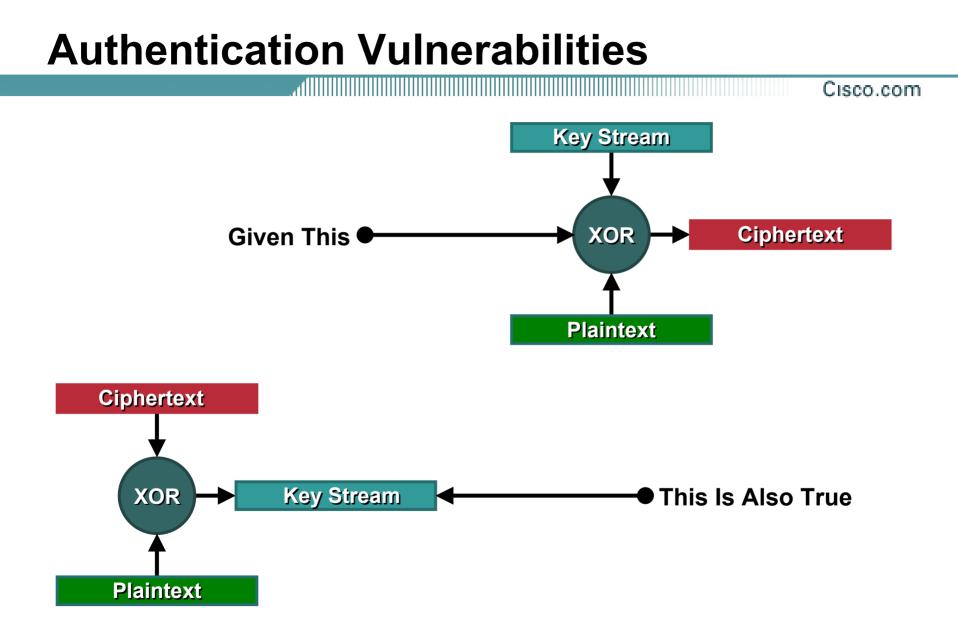


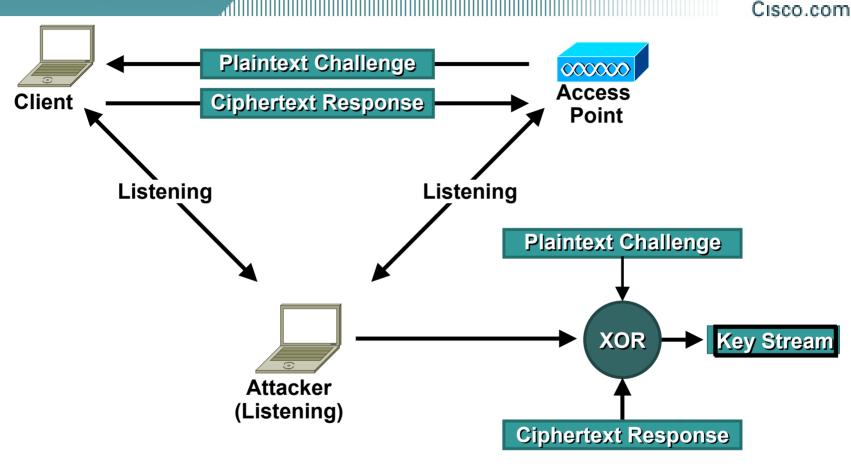
- Drivers for Wireless Security
- Wireless Security in 802.11
- Vulnerabilities in 802.11 Wireless Security
- Technologies for Secure Wireless LANs
- Deploying Secure Wireless LANs
- What Lies Ahead

# **Vulnerabilities in 802.11 Wireless Security**

- Authentication Vulnerabilities
- Statistical WEP Key Derivation
- Inductive WEP Key Derivation

- SSID is not a security mechanism!
- Disabling SSID broadcast in the beacons does not prevent an attacker from seeing them
- Disabling SSID broadcasts may impact WiFi compliance


#### **SSID** for Authentication


dillinini Cisco.com

| Sniffer Wireless - Local, 802.11 Wireless LAN DS Channel 1 - Signal Level 79 % - [Snif2: Decode, 195/336 802.11 LANs Frames] | ×        |
|------------------------------------------------------------------------------------------------------------------------------|----------|
| 💻 File Monitor Capture Display Tools Database Window Help                                                                    | ×        |
| II     III     III     III                                                                                                   |          |
|                                                                                                                              |          |
| No. Status Source Address Dest Address Summary Len (B) Rel. Time Delta Time                                                  | <u> </u> |
| □ 195  [1]  Airont31669C  Airont500292  802.11: 1.0 Mbps, Signal=100%, Probe response  52   0:00:08.434   0.000.649<br>◀     | ᅬ        |
|                                                                                                                              |          |
| DLC:                                                                                                                         | <b>•</b> |
| DLC: 00 = No point coordinator at Access Point                                                                               |          |
| - DIC:1 = Privacy                                                                                                            |          |
| DLC: = Short Preamble option is not allowed                                                                                  |          |
|                                                                                                                              |          |
| DLC: 0 = Channel agility is not in use                                                                                       |          |
|                                                                                                                              |          |
| DLC: 0000 0000 = Reserved                                                                                                    |          |
|                                                                                                                              |          |
| DLC: Element ID = 0 (Service Set Identifier)                                                                                 |          |
| $\Box$ DLC: Length = 5 octet(s)                                                                                              |          |
| DLC:Service Set Identity = "LINC5"                                                                                           |          |
|                                                                                                                              | -1       |
| DLC: Element ID = 1 (Supported Rates)                                                                                        |          |
| $\Box_{1} DLC: \dots Length = 4 \text{ octet}(s)$                                                                            |          |
| 🖓 DLC:Supported Rates information field = 82                                                                                 |          |
| DIC: 1 = Basic Service Set Basic Rate                                                                                        | -        |
| 00000000: 50 00 3a 01 00 40 96 50 02 92 00 40 96 31 66 9c P.:@ P.´.@ 1f                                                      |          |
| 00000010: 00 40 96 31 66 9c a0 17 c7 46 39 22 cc 00 00 00 .@∥1f∥ .çF9"Ì                                                      |          |
| 00000020: 64 00 11 00 00 05 <u>4c 49 4e 43 35</u> 01 04 82 84 8b dLIŇC5↓↓↓<br>00000030: 96 03 01 01                          |          |
| Lexpert λ Decode λ Matrix λ Host Table λ Protocol Dist. λ Statistics /                                                       | _        |
|                                                                                                                              | 1        |
|                                                                                                                              | 11.      |

 Wireless NIC is authenticated, not the user

- Unauthorized users can use authorized devices
  - Lost or stolen laptop
  - Disgruntled Employees



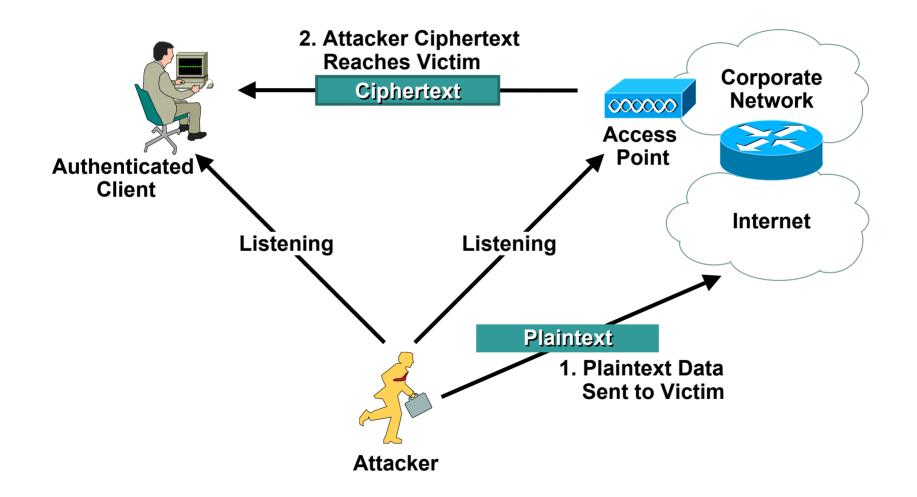


# • Shared Key is vulnerable to Man in the Middle Attack

- MAC Authentication is weak
- MAC addresses are sent in the clear
- MAC addresses can be sniffed and spoofed

# **Statistical Key Derivation**

- 802.11 WEP is flawed
- A WEP key can be derived in 1M to 4M frames using statistical analysis
- Attacker is passive, and 'listens' to wireless LAN
- Implemented in the AirSnort application


# **Inductive Key Derivation**

- An attacker can derive the key by soliciting info from a wireless LAN
- Common Methods
  - **IV/WEP Key Replay**
  - **Frame Bit Flipping**

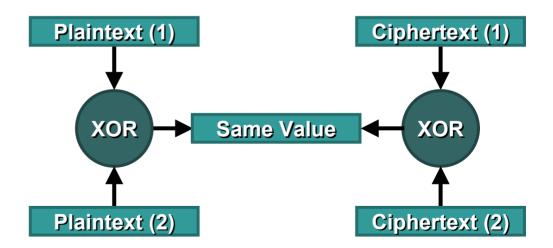
# **IV/WEP Key Reuse Vulnerability**

- Attacker can send a known plaintext to an observable wireless client (i.e. via email)
- Attacker will 'listen' to wireless LAN, waiting to see predicted ciphertext
- Once attacker 'sees' the ciphertext, key stream is derived
- Key stream is valid only for the specific IV

# **IV/WEP Key Reuse Vulnerability**



# **IV/WEP Key Reuse Vulnerability**


Cisco.com

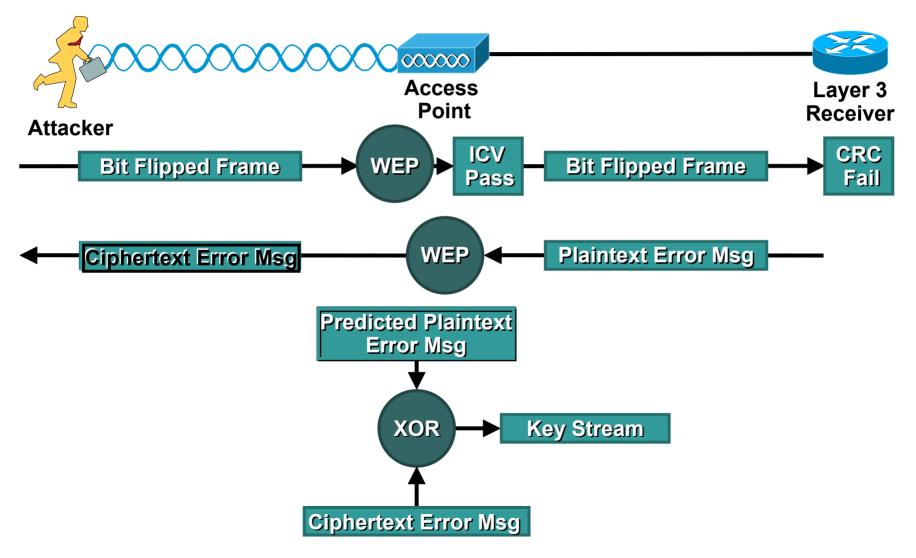
 Two plaintexts XORed have the same output as their ciphertexts XORed



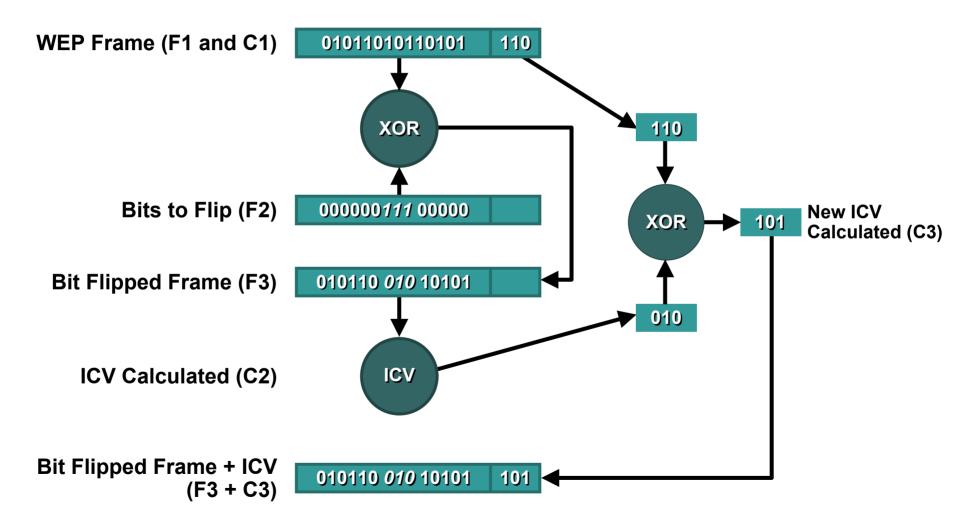
This enhances

 a snoopers
 chances of
 predicting
 the plaintext




# **Bit Flipping Vulnerability**

- Attacker captures a frame from a wireless LAN
- The frame is modified by flipping bits
- Attacker predicts a high layer error
- Attacker waits for predicted error ciphertext
- The key stream is derived upon 'seeing' predicted ciphertext


# **Bit Flipping Vulnerability**

- Integrity Check Value (ICV) based on CRC-32 polynomial
- Known mathematical flaw with ICV allows changes to the encrypted frame and ICV
- AP and or client will accept the frame as valid due to this flaw

# **Bit Flipping Vulnerability**



# **Bit Flipping Process**



# 802.11 Security Summary

The security mechanisms in the 1997

802.11 specification are flawed

**Open authentication** 

**Shared Key authentication** 

**WEP** 

These will NOT secure your wireless LAN!!

# 802.11 Security Summary

- Requirements for wireless authentication
   User-based, centralized, strong authentication
   Mutual authentication of client and network
- Requirements for wireless privacy
   Strong, effective encryption
   Effective message integrity check
   Centralized, dynamic WEP key management



- Drivers for Wireless Security
- Wireless Security in 802.11
- Vulnerabilities in 802.11 Wireless Security
- Technologies for Secure Wireless LANs
- Deploying Secure Wireless LANs
- What Lies Ahead

#### Secure Wireless LANs User Considerations

- Single sign on
- Extensible authentication support
- Minimal security overhead

# Secure Wireless LANs Infrastructure Considerations

Cisco.com

#### Cost

Additional Server Hardware Additional Network Infrastructure

- Rapid Deployment
- Maintenance and Support

Impact to client and infrastructure

• Future 802.11 Enhancements

Interoperability with enhancements

# **Technologies for Secure Wireless LANs**

Cisco.com

#### • VPN

802.1X with TKIP encryption

# **Secure Authentication Requirements**

Cisco.com

- Centralized authentication via AAA server
- Mutual authentication of client and network
- Support for dynamic, user-based encryption keys

**Optional capability to change keys** 

# **VPN over 802.11**

Cisco.com

#### Two phase authentication

Device authentication via pre-shared key or PKI

User authentication via AAA server

- Mutual authentication
- Extensible user authentication types

# 802.1x Standard

**Port-Based Network Access Control** 

- Falls under 802.1 not 802.11
- This is a network standard, not a wireless standard
- Is part of the 802.11i draft
- Provides network authentication, not encryption
- Incorporated as part of LEAP

# 802.1x Overview

- Standard set by the IEEE 802.1 working group
- Describes a standard link layer protocol used for transporting higher-level authentication protocols
- Works between the supplicant (client) and the authenticator (network device)
- Maintains backend communication to an authentication (RADIUS) server

#### **EAP Overview**

- EAP—The Extensible Authentication Protocol
- A flexible protocol used to carry arbitrary authentication information
- Typically rides on top of another protocol such as 802.1x or RADIUS (could be TACACS+, etc.)
- Specified in RFC 2284
- Support multiple "authentication" types: Plain password hash (MD5) (not mutual) OTP Tokens (not mutual) TLS (based on X.509 certificates) And EAP-Cisco Wireless!!

# 802.1x and EAP

#### dillining Cisco.com

- 802.1x Transport authentication information in the form of Extensible Authentication Protocol (EAP) payloads
- The authenticator (AP or switch) becomes the middleman for relaying EAP received in 802.1x packets to an authentication server by using RADIUS to carry the EAP information
- Three forms of EAP are specified in the 802.1x standard

EAP-MD5—MD5 Hashed Username/Password

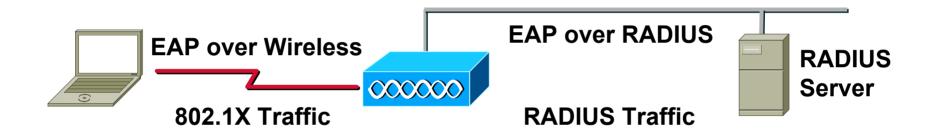
EAP-OTP—One-Time Passwords

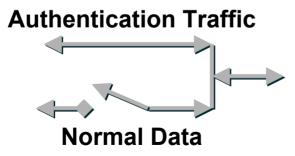
EAP-TLS—Strong PKI Authenticated Transport Layer Security (TLS)

802.1x Header

EAP Payload

# 802.1x, EAP and RADIUS

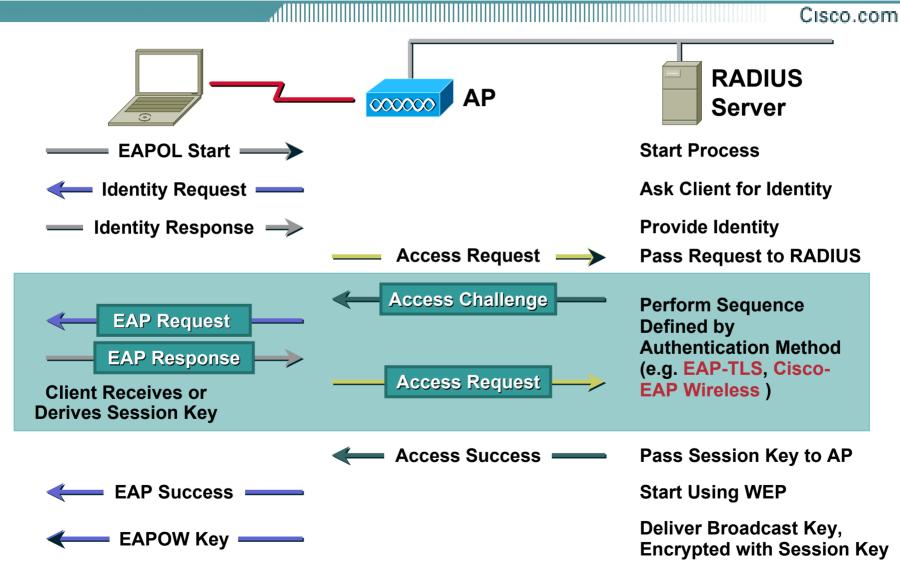

- RADIUS—The Remote Authentication Dial In User Service
- A protocol used to communicate between a network device and an authentication server or database
- Allows the communication of login and authentication information; i.e., username/password, OTP, etc.
- Allows the communication of arbitrary value pairs using "Vendor Specific Attributes" (VSAs)
- Can also act as a transport for EAP messages




# 802.1x / EAP Authentication

Cisco.com

#### 802.11 Association Complete; Data Blocked by AP






AP "Encapsulates" 802.1x Traffic into RADIUS Traffic, and Visa Versa

AP Blocks Everything but 802.1xto-RADIUS Authentication Traffic

# **802.1x / EAP Authentication Steps**



ACC-232

# **802.1x for Wireless LANs**

Cisco.com

- Cisco has led the way with EAP-Cisco Wireless (LEAP)
- Multiple wireless vendors have adopted 802.1x for WLANs
- 802.1X authentication protocols include EAP-Cisco Wireless, EAP-TLS, EAP-MD5, TTLS, and PEAP
- Microsoft has integrated support for EAP-TLS and EAP-MD5 into Windows XP operating system

Also has announced support for EAP on native platforms (Windows 2000, Windows NT 4, Windows 98 and Windows ME)

# EAP Authentication Types for Wireless LANs

Cisco.com

• EAP-Cisco (aka LEAP)

**Password-based** 

- EAP-TLS (Transport Layer Security) Certificates-based
- EAP-PEAP (Protected EAP)

Hybrid—Certificate/Password

• EAP-TTLS (Tunneled TLS)

Hybrid—Certificate/Password

• EAP-SIM (SIM Card)

**Authentication by SIM Cards** 

ACC-232

# **EAP-Cisco Authentication**

Cisco.com

Client Support

Windows 95-XP

Windows CE

Macintosh OS 9.X and 10.X

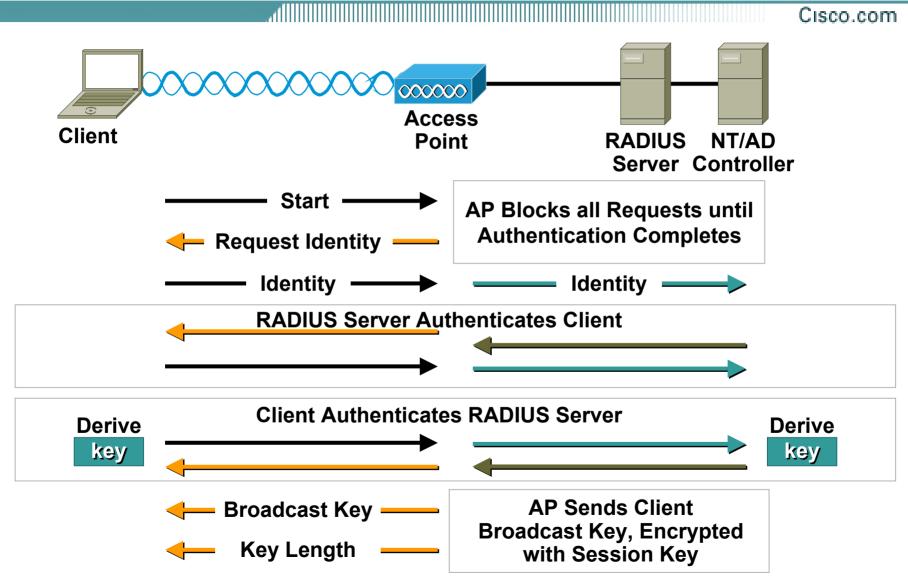
Linux

Device Support
 Workgroup Bridges (WGB 340 and 350)
 Point to Point Bridges (BR350 series)

# **EAP-Cisco Authentication**

RADIUS Server

**Cisco ACS** 


**Cisco AR** 

**Funk Steel Belted RADIUS** 

**Interlink Merit** 

 Microsoft Domain or Active Directory (optional) for back end authentication

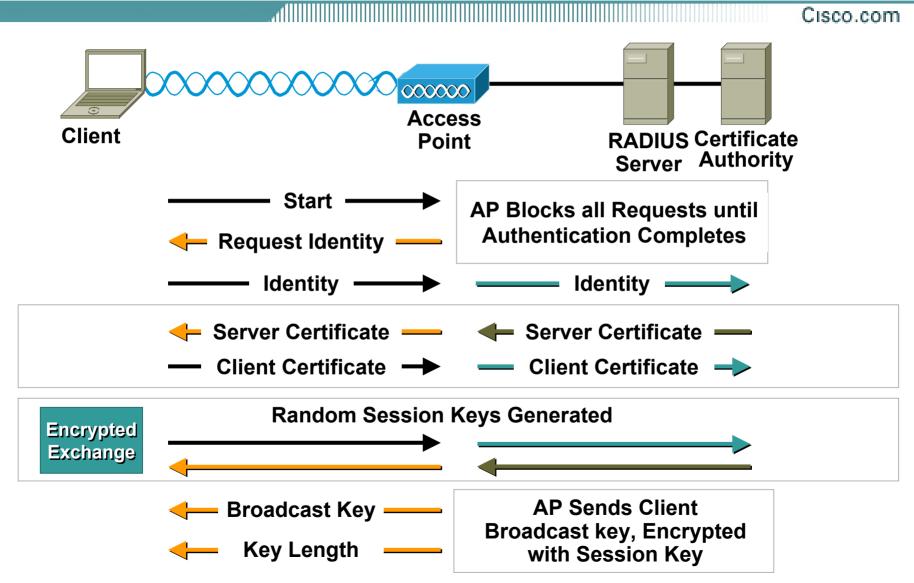
# **EAP-Cisco Authentication**



ACC-232

# **EAP-TLS Authentication**

Cisco.com


#### Client Support

Windows 2000, XP

Clients require a local user or machine certificate

# Infrastructure Requirements EAP-TLS supported RADIUS server Cisco ACS, Cisco AR, MS IAS RADIUS server requires a server certificate Certificate Authority Server Windows 2000 Server

# **EAP-TLS Authentication**



ACC-232

# **Hybrid Authentication**

Cisco.com

• EAP-TTLS

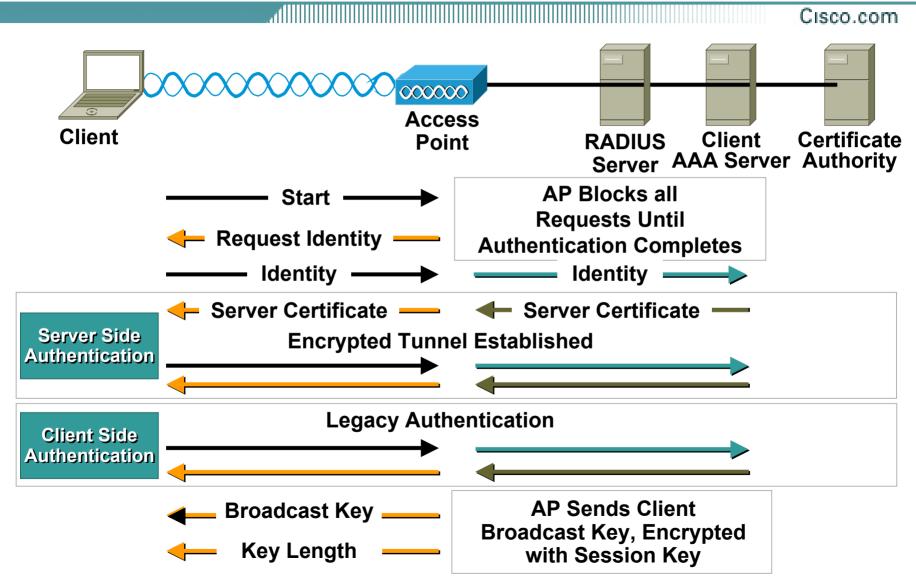
Server side authentication with TLS

Client side authentication with legacy authentication types (CHAP, PAP, etc)

#### EAP-PEAP

Server side authentication with TLS

Client side authentication with EAP authentication types (EAP-GTC, EAP-MD5, etc)


# **Hybrid Authentication**

- Both require CA, as with EAP-TLS
- Clients do not require certificates
   Simplifies end user/device management
- Allows for one way authentication types to be used

**One Time Passwords** 


Proxy to LDAP, Unix, NT/AD, Kerberos, etc

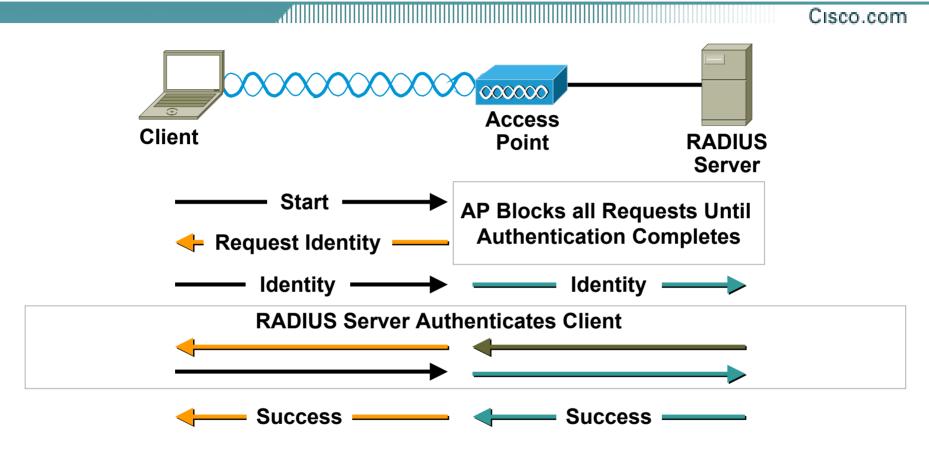
# **EAP-TTLS Authentication**



ACC-232

# **EAP-PEAP** Authentication




# **EAP-MD5** Authentication

- An example of what NOT to use in a WLAN
  - One way authentication

**Network authenticates client** 

No support for dynamic keys

# **EAP-MD5** Authentication



#### **EAP-SIM Authentication Overview**

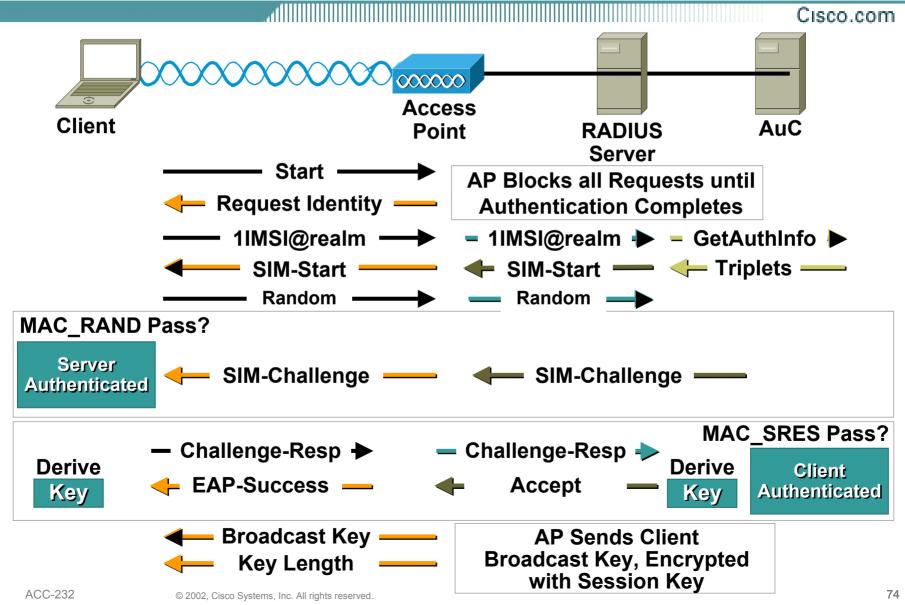
Cisco.com

- User authentication performed based on an IMSI in the SIM card which is used to authenticate GSM phones today
- Strong Authentication Using 802.1x

Mutual authentication (not currently implemented)

One time password algorithm

**Dynamic WEP keys** 


Back-end Integration

Uses existing GSM operator provisioning chain

Leverage existing roaming agreements

Leverage existing authentication and billing infrastructure

#### **EAP-SIM** Authentication



#### **Authentication Attack Mitigation**

Cisco.com



#### X: Mitigates Vulnerability \*Requires the Use of Strong Passwords

ACC-232

#### **Strong Encryption Requirements**

- Cryptographically sound encryption algorithm
- Effective message integrity

### **Strong Encryption**

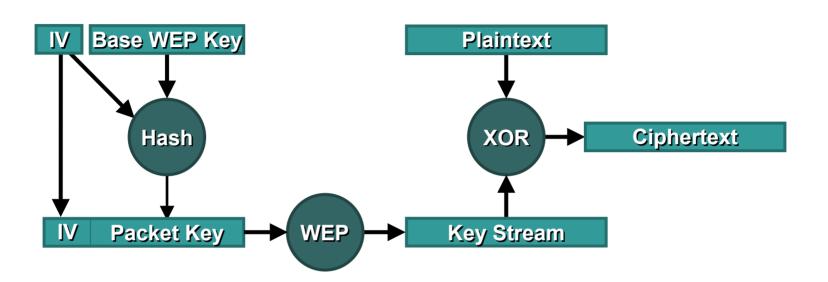
Temporal Key Integrity Protocol (TKIP)

**Enhances WEP encryption** 

**Per Packet Keying** 

**Message Integrity Check** 

VPN over Wireless


**3DES** encryption—Tried and true

HMAC-SHA1 or HMAC-MD5 message authentication

#### **TKIP Encryption**

- Cisco offers a pre-standards implementation
- Per Packet Keying
- Message Integrity Check
- Broadcast Key Rotation

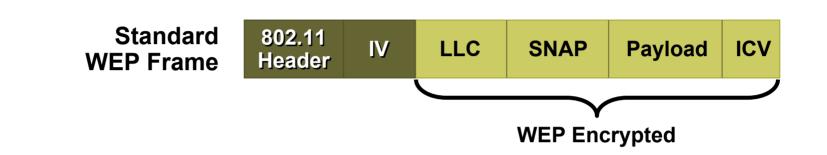
### **Per Packet Keying Operation**

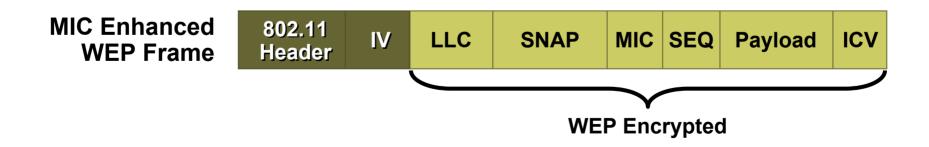


- IV Sequencing—IVs increment by one
- Per Packet IV is hashed with base WEP key
- Result is a new 'Packet' WEP key
- The Packet WEP key changes per IV

### **Per Packet Keying Caveats**

- Packet key remains unique as long as IV is unique
- 802.11 IV has 2^24 possible integers (roughly 0 to 16.7M)
- Base WEP key must be changed via 802.1X in order to avoid IV/Packet key stream derivation


#### **Message Integrity Check (MIC)**


Cisco.com

#### Prevents IV/WEP key reuse

#### Prevents frame tampering

#### **Message Integrity Check (MIC)**

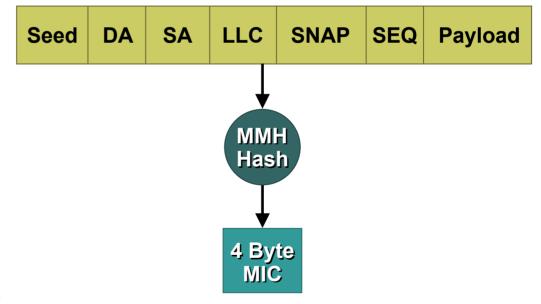




### **Message Integrity Check (MIC)**

#### Cisco.com

#### MIC is calculated from


**Random Seed Value** 

MAC Header

**Sequence Number** 

**Data Payload** 

- Components are hashed to derive a 32 bit MIC
- SEQ number must be in order, or frame is dropped



#### **Broadcast Key Rotation**

- Broadcast key is required in 802.1X environments
- Broadcast key is vulnerable to same attacks as static WEP key
- Broadcast key needs to rotate, as with unicast key

#### **Encryption Attack Mitigation**



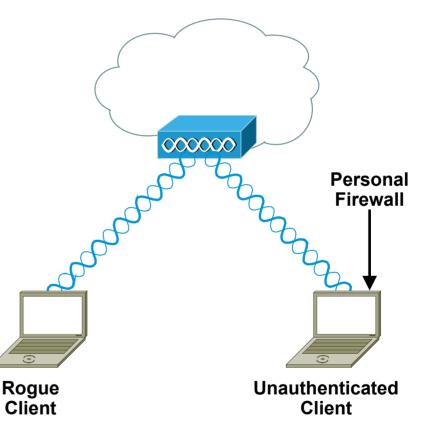


- Drivers for Wireless Security
- Wireless Security in 802.11
- Vulnerabilities in 802.11 Wireless Security
- Technologies for Secure Wireless LANs
- Deploying Secure Wireless LANs
- What Lies Ahead

#### **Deploying Secure Wireless LANs**

Cisco.com

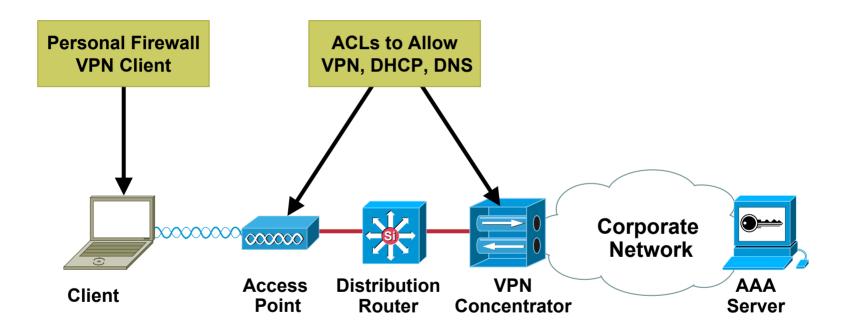
#### • VPN over 802.11


#### 802.1X w/TKIP Encryption

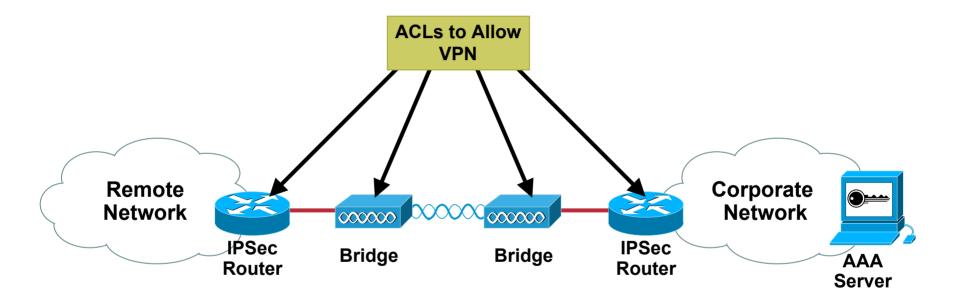
### VPN over 802.11—Client

 Requires a separate logon for VPN 👌 Cisco Systems VPN Client × **CISCO SYSTEMS** ահուսություն Connection Entry: 03-SanJose Options < <u>N</u>ew... Host name or IP address of remote server: wireless.cisco.com Connect Close

### VPN over 802.11—Client


- Before VPN authentication client is on unprotected WLAN
- Personal Firewall can mitigate attacks on these clients




#### **VPN over 802.11— Filters & Access Lists**

- Protect as much as we can the open WLAN :
- Filters on the Access Points
- Access Lists on the L3 switches/routers

### **VPN Logical Topology**



#### **VPN over 802.11 Bridging Scenarios**



#### **VPN over 802.11—Performance**

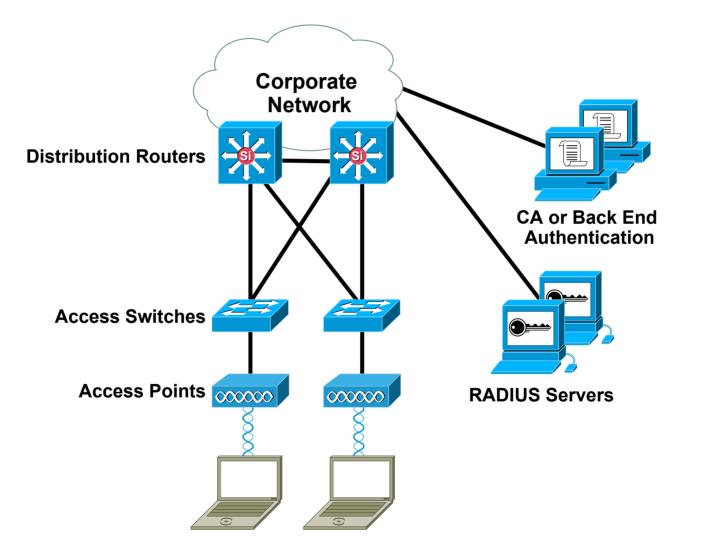
- All message authenticity and encryption done in software
- Average of 30% to 40% performance impact

#### VPN over 802.11—Issues

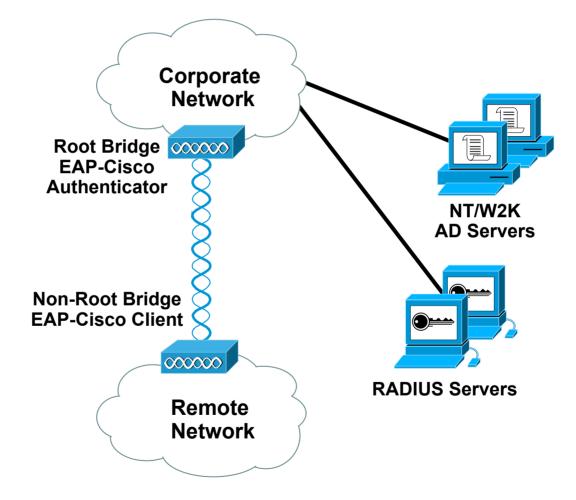
Cisco.com

- Client throughput may require multiple concentrators
- Support for IP unicast exclusively No support for IPX, AppleTalk
   No support for multicast
- 802.11e QoS enhancements useless for VPN WLAN clients

#### All traffic is IP/ESP encapsulated


#### VPN over 802.11—Issues

- No support for WLAN appliances
   Barcode readers, 802.11 phones
- Roaming Issues
  - Layer 2—ESP session timeout
  - Layer 3—Interoperability with Mobile IP


### 802.1X w/TKIP—Configurations

- EAP-Cisco
- EAP-TLS
- Both require Cisco clients and APs

### 802.1X w/TKIP—Topology



#### EAP-Cisco w/TKIP—Bridging Scenario



#### **EAP-TLS w/TKIP—Client**

Cisco.com

- Included in WinXP OS release
- Configure multiple network profiles
- Client displays all known networks with broadcast SSID enabled

|                                                                                                     | - whetess network connection 2 properties                       |
|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
|                                                                                                     | General Wireless Networks Authentication Advanced               |
|                                                                                                     | ✓ Use <u>W</u> indows to configure my wireless network settings |
|                                                                                                     | Available <u>n</u> etworks:                                     |
|                                                                                                     | To connect to an available network, click Configure.            |
|                                                                                                     | Configure                                                       |
|                                                                                                     | Refresh                                                         |
|                                                                                                     | Preferred networks:                                             |
|                                                                                                     | Automatically connect to available networks in the order listed |
|                                                                                                     | below:<br>X Cisco Enterprise Move up                            |
|                                                                                                     | R home                                                          |
| Wireless Network Connection 2 Properties                                                            |                                                                 |
| General Wireless Networks Authentication Advanced                                                   | dd                                                              |
| Select this option to provide authenticated network access<br>wired and wireless Ethernet networks. | for Advanced                                                    |
| Wied and Wieless Etheniet networks.                                                                 |                                                                 |
| Enable network access control using IEEE 802.1X                                                     | OK Cancel                                                       |
| EAP type: Smart Card or other Certificate                                                           |                                                                 |
| Prop                                                                                                | verties                                                         |
| Authenticate as <u>c</u> omputer when computer information is                                       | available                                                       |
| Authenticate as guest when user or computer informatio unavailable                                  | in is                                                           |
|                                                                                                     |                                                                 |
|                                                                                                     |                                                                 |
|                                                                                                     |                                                                 |
| ОК                                                                                                  | Cancel                                                          |

#### 802.1X w/TKIP—General Issues

New cryptographic techniques
 Proven in IEEE, but only time will tell...

802.11 standard is evolving

Changes should be expected 802.11 task groups E, F, H, and I

#### 802.1X w/TKIP—Performance

- WEP encryption done in hardware
  - MIC and per packet keying done in software
  - Depending on traffic type, throughput hit of 5% to 15% with enhancements enabled

### 802.1X w/TKIP—General Issues

Cisco.com

#### Authentication types not pervasive (yet...)

No one scheme satisfies every scenario or requirement

Roaming

RADIUS request adds ~ 300–600 ms to roam time

A pre-authentication mechanism is needed to expedite roaming process

#### **Other Security Features**

Cisco.com

#### RADIUS Accounting

Publicly Secure Packet Forwarding (PSPF)

#### **RADIUS Accounting**

- AP will log client associations and disassociations using RFC2866 RADIUS accounting
- No client upgrade required; AP only enhancement
- Vendor Neutral

### **RADIUS Accounting Overview**

- AP will send a start message to the accounting server after client association
- AP will send update messages at configurable intervals
- AP will send a stop message when client disassociates

#### **RADIUS Accounting Overview**

- Accounting can be configured for EAP clients, Non-EAP clients, or both
- Non-EAP refers to standard Open/Shared Key authentication and/or MAC authentication

#### **RADIUS Accounting Overview**

Cisco.com

What info does RADIUS accounting provide?

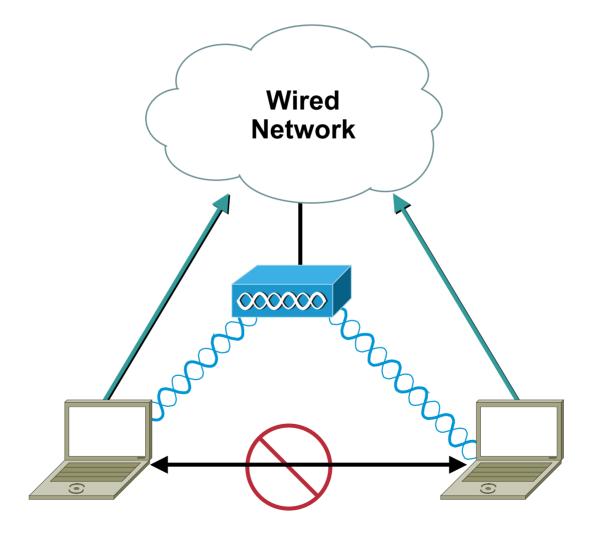
Input/Output bytes

Input/Output packets

**Session duration** 

**Association ID** 

**NAS (Access Point) IP Address** 


These values are on a per client basis

#### **Publicly Secure Packet Forwarding**

 Prevents WLAN inter-client communication

- Client can communicate out through the AP
- Clients cannot communicate to other stations in the BSS

#### **PSPF—Blocking Inter-client Communication**





- Drivers for Wireless Security
- Wireless Security in 802.11
- Vulnerabilities in 802.11 Wireless Security
- Technologies for Secure Wireless LANs
- Deploying Secure Wireless LANs
- What Lies Ahead

- Ratification of IEEE 802.11i
- Adoption of TKIP encryption
   Certifiable vender interoperability (WiFi)
- AES encryption
   3DES successor



## Securing 802.11 Wireless Networks

**Session ACC-232** 



## Please Complete Your Evaluation Form

**Session ACC-232** 

# **CISCO SYSTEMS EMPOWERING THE** INTERNET GENERATION